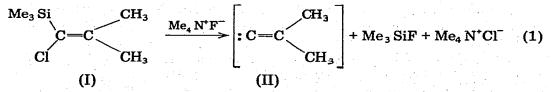
Journal of Organometallic Chemistry, 105 (1976) C29–C31 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

GENERATION OF A VINYLIDENE CARBENE FROM AN α -CHLOROVINYLSILANE


ROBERT F. CUNICO* and YEUN-KWEI HAN

Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115 (U.S.A.) (Received April 30th, 1975; by publisher December 8th, 1975)

Summary

The reaction of 1-chloro-1-trimethylsilyl-2-methylpropene with anhydrous tetramethylammonium fluoride in the presence of carbenophiles affords dimethylvinylidene insertion products.

The observation that fluoride ion serves as an effective reagent for the vicinal dehalosilylation of β -chlorovinylsilanes to acetylene [1] has been followed by applications to benzyne [2] and allene [3] syntheses. We now report a novel reactivity^{*} of 1-chloro-1-trimethylsilyl-2-methylpropene with anhydrous tetramethylammonium fluoride in which geminal dehalosilylation occurs to afford a vinylidene carbene (or carbenoid) species (II) (eq. 1)^{**}. The transformation is viewed as being initiated by nucleophilic attack of fluoride ion at silicon followed by loss of chloride ion from the incipient carbanionic center^{***}. Although potassium fluoride in aprotic solvents has proven a potent dechlorosilylating reagent for vicinal eliminations [1-3,8], it was ineffective for the present purpose. Evidence for the generation of II was provided by in situ trapping with the carbenophiles listed in Table 1.

The carbene precursor I was prepared as follows. To a mixture of 120 ml (180 mmol) of 1.5 N n-butyllithium in hexane, 265 ml of THF and 32 ml of

***No evidence is yet at hand concerning the concertedness or non-concertedness of this process, or of the state of complexation of the resulting "carbene".

^{*}The thermolysis of α -haloalkyltrihalosilanes is known to afford dihalocarbene (X₂ C:) species [5, 6]. Dichlorocarbene is also produced from the reaction of Cl₃ CP(O)(OEt)₂ with fluoride ion [7].

^{**}For other routes affording these species, see ref. 4.

Carbenophile	Product a	R	Yield (%) ^b	Reference
\bigcirc		CH3	55	12
\checkmark		СН3		
	CH3	OEt	66	12
CH==CH ₂		Ph	55	13
	R CH3	Me ₃ Si	35	This work 9
•		CH3		
Et ₃ SiH	Et ₃ SiCH===C		65	14

^a Also accompanied by 4-15% of 1-chloro-2-methylpropene. ^b Yields determined by GLC. ^c NMR (CDCl₃, PhH int. std.) δ 1.63 (3H, s), 1.62 (3H, s), 0.96 (1H, m), 0.63 (1H, m), 0.40 (1H, m), -0.19 (9H, s). Found: C, 70.08; H, 11.70. C₉ H₁₈Si calcd.: C, 70.05; H, 11.76%.

ether prepared at -100° C was added 21 g (180 mmol) of N, N, N', N'-tetramethylethylenediamine (TMEDA) followed by precooled (-78°C) 1-chloro-2methylpropene (16 g, 180 mmol). After 4 h at -100°C, precooled (-78°C) trimethylchlorosilane (19 g, 180 mmol) and 10 ml of hexamethylphosphortriamide (HMPA)^{*} in 30 ml of THF were added in turn. The reaction mixture was held 1 h at -100° C, 4 h at -78° C and worked up by dilute acid and exhaustive water extraction. Fractionation afforded a forerun containing n-butyltrimethylsilane (26% by GLC)^{**}, followed by 11.3 g (39%) of I^{***} (91% pure by GLC), b.p. 160-162°C/760 mmHg. Refractionation gave material of 99% purity. Generation of the dimethylvinylidene insertion products can be illustrated by the reaction employing ethyl vinyl ether. Thus, a mixture of 0.95 g (5.8 mmol) of I, 0.57 g (6.2 mmol) of anhydrous Me₄ NF****, 7.5 g (0.10 mmol) of ethyl vinyl ether and 10 ml of diglyme was prepared in a dry box. After two days at 25°C in a closed system, workup afforded a 66% yield of 2-ethoxy-1,1-isopropylidenecyclopropane and a 15% yield of 1-chloro-2-methylpropene, as determined by GLC. Trimethylfluorosilane was also identified as a reaction product. Total consumption of I occurred under these conditions.

The appearance of 1-chloro-2-methylpropene among the reaction products is presumably due to inherent^{****} and adventitious moisture present within the system which prevents carbene formation by protonation

^{*}A much lower yield of I is realized (ca. 10%) under similar conditions if HMPA is omitted. **Optimization of metalation was not investigated. The literature contains references to un-

successful attempts at the metalation of 1-chloro-2-methylpropene [9].

^{***}IR: 3.35m, 6.21w, 6.95w, 7.31w, 8.0s, 11.2m, 11.96s, 13.24m μ m; NMR (CCl₄): δ (ppm)

^{1.28 (9}H, s), 1.87 (3H, s), 1.90 (3H, s). Found: C, 51.68, H, 9.47. C₇ H₁₅ClSi calcd.: C, 51.67; H, 9.29%.

^{*****}Prepared as reported [10] employing hydrogen fluoride dried over phosphorus pentafluoride [11]. Elemental analysis indicated a maximum water content of 11% for this material.

of I during or after silicon—carbon cleavage. In a separate experiment utilizing cyclohexene as the carbenophile, but employing a sample of anhydrous tetramethylammonium fluoride to which one equivalent of water had been added, a slow consumption of I occurred (72% over 75 h) which resulted in a 62% yield of 1-chloro-2-methylpropene and a 15% yield of insertion product.

It is worthy of note that the present system affords a mild method for the transfer of the dimethylvinylidene function which is unique in that the strongly basic conditions (alkoxide, organolithium reagents) usually employed in its generation are avoided.

References

- 1 R.F. Cunico and E.M. Dexheimer, J. Amer. Chem. Soc., 94 (1972) 2868.
- 2 R.F. Cunico and E.M. Dexheimer, J. Organometal. Chem., 59 (1973) 153.
- 3 T.H. Chan and W. Mychajlowskij, Tetrahedron Lett., (1974) 171.
- 4 P.J. Stang, M.G. Mangum, D.P. Fox and P. Haak, J. Amer. Chem. Soc., 96 (1974) 4562.
- 5 W.I. Bevan and R.N. Haszeldine, J. Chem. Soc., Dalton Trans., (1974) 2509.
- 6 J.M. Birchall, G.N. Gilmore and R.N. Haszeldine, J. Chem. Soc., Perkin Trans. I, (1974) 2530.
- 7 J.P. Berry, J.R. Arnold and A.F. Isbell, J. Org. Chem., 33 (1968) 1664.
- 8 T.H. Chan and D. Massuda, Tetrahedron Lett., (1975) 3383.
- 9 G. Köbrich, Angew. Chem., Int. Ed. Eng., 11 (1972) 473.
- 10 G. Urban and R. Dötzer, U.S. Patent No. 3388131, June 11, 1968.
- 11 K.O. Christe, C.J. Schaak and R.D. Wilson, Inorg. Chem., 14 (1975) 2224.
- 12 H.D. Hartzler, J. Amer. Chem. Soc., 86 (1964) 526.
- 13 M.S. Newman and T.B. Patrick, J. Amer. Chem. Soc., 91 (1969) 6461.
- 14 A.D. Petrov and G.I. Nikishin, Zh. Obshch. Khim., 26 (1956) 1233; M.S. Newman and C.D. Beard, J. Amer. Chem. Soc., 92 (1970) 4309.